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Methods 

Model description 

We performed our analysis focusing on the United Kingdom by using an individual-based 

stochastic simulation model similar to the one developed for Europe in [1–3]: highly detailed 

country-specific socio-demographic data on age structure, household size and composition, 

employment rates by age, educational system were used to generate a synthetic population where 

each individual is given an age and is associated to a specific household and an occupation 

chosen between student, worker and inactive (unemployed/retired). The epidemic model is a 

spatially explicit, discrete time SEIR model with explicit transmission in households, schools and 

workplaces and in the general community. Throughout the whole course of the simulation cases 

from abroad were imported in the UK on the basis of the number of daily airport arrivals from the 

rest of the world, similarly to [1,4,5]. 

In the present version, the implemented school organization reflects the real situation existing in 

the UK in terms of both partitioning of students into different educational levels and class and 

school size. More in detail, four educational stages have been considered, following the 

educational structure in England and Wales, and quite in agreement with the situation of Scotland 

and Northern Ireland: pre-primary school (kindergartens, day-care centers) up to 5 years old, 

primary school for children from 5 to 11 years old, secondary school from 11 to 18 years old, higher 

education (post-secondary training, university, doctoral programs) for students older than 18. For 

each school level the corresponding information on school size has been taken into account in 

order to obtain a realistic size distribution [6]; in addition, primary and secondary schools have 

been further partitioned into classes and grades, reflecting information on average size by school 

level in the UK, namely 25 pupils per class in primary education and 20 students per class in 

secondary education [7]. All this information have been included in the model in order to build 

schools of the correct size and to assign every student to the correct school level (from pre-primary 

to higher education) and grade according to age; moreover, in order to apply mitigation policies 

based on gradual closure of schools, for primary and secondary schools students belonging to the 

same school were sub-grouped into classmates, same grade but different class or different grade. 

Transmission model 

As in [2–4,8] interaction between individuals (and thus infection transmission) can occur in four 

different settings, namely household, school, workplace or general community. Here we use 

different, setting-specific infectivity profiles over time and generation times. Moreover, as a 

consequence of the refinement of primary and secondary schools accounting for classes and 

grades introduced in our agent based model we were able to split transmission at school into three 

levels, so that a child can transmit to classmates, to students belonging to the same grade but 

different class, or to students from other grades, with specific transmission rates as detailed in [9]. 

In the absence of specific information we assumed transmission rates for class, grade and school 

to be independent of school level (i.e. primary or secondary education). Since pre-primary schools 

were not split into classes and grades and their average size was smaller than those of the other 
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educational levels, the corresponding transmission rate was assumed equal to that in class for the 

other school levels. The model has therefore six transmission rates as a whole. 

As regards infectivity over time, following state-of-the-art estimates on generation time distributions 

for the 2009 H1N1 influenza pandemic [9], we assumed infectiousness profiles over time to 

depend on the age of the case and on the setting where interaction occurs. We categorized the 

population into “students” and “adults” and assumed that interaction would occur in household, at 

school/workplace and in the general community. We assumed infectivity profiles to be discretized 

Weibull distributions with an offset of 1 (which is equivalent to having a latency period of 1 day), 

with parameters depending on whether the case was a student interacting in household, a student 

interacting outside the household (i.e. at school or in the community), or an adult. At any time 𝑡, 

any infectious individual 𝑖 can infect others in every setting he belongs to, with probability 𝑝𝑖(𝑡) =

1 − exp(−𝜆𝑖Δt), where 𝜆𝑖(𝑡) is the force of infection exerted at time 𝑡 by individual 𝑖 in that specific 

setting. For instance, the force of infection of infectious individual 𝑖 on another member of the same 

household is 

𝜆𝑖(𝑡) = 𝑘
𝐻(𝑡 − 𝜏𝑖; 𝑎𝑖)𝛽

𝐻/𝑁𝑖 

where 𝑘𝐻 = 𝑘𝐻(𝑡 − 𝜏𝑖; 𝑎𝑖) is the infectivity of the case in the household, which is a function of the 

time of infection 𝜏𝑖 and of the age 𝑎𝑖 of the case, 𝛽𝐻 is the transmission rate in the household and 

𝑁𝑖 is the household size. Analogous expressions describe the force of infection in schools, 

workplaces and general community. We assumed that, during school closure, household 

transmission remained unchanged, but community transmission increased of 25% [4]. 

Natural history of influenza and model calibration 

Given our choice to consider infectivity profiles to depend on age (student/adult) and transmission 

setting, we assumed the value of the mean generation time to be 3.7 days (standard deviation 3.1 

days) for students in household; 1.1 days (standard deviation 0.4 days) for students at school and 

in the community; 2.3 days (standard deviation 2.9 days) for adults [9]. 

The transmission model was parameterized in such a way that the overall proportions of cases in 

the different settings, assuming no differential susceptibility between adults and children, were 

consistent with empirical estimates, namely: 30% in households; 18% in schools; 19% in 

workplaces; 33% in the general community [4,10–12], while assuming age-dependent 

susceptibility to infection led to 27% of transmission in households, 40% in schools, 8% in 

workplaces and 25% in the general community, similarly to what has been found in [2]. In addition, 

to match findings of [9], the proportion of transmission in class was set to be the same as the 

proportion of transmission in the entire school, and around 1.35 times the proportion of 

transmission in the grade. Different transmissibility scenarios were obtained by multiplying all 

transmission rates for suitable constant values. 

Choosing generation time distributions and transmission rates determines the evolution of the 

epidemic.  
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Following the argument proposed in [13] the basic reproduction number 𝑅0 is generally defined as 

the average number of secondary infections caused by a typical primary infection in a fully 

susceptible population [14]. However, the definition of a typical infectious individual for a model 

with highly heterogeneous mixing such as the one used in this work is not straightforward. 

Therefore, in the parameterization procedure we considered in place of 𝑅0 the quantity 𝑅𝑟𝑎𝑛𝑑, 

which is defined as the average number of secondary infections generated by a randomly selected 

individual in a fully susceptible population [4]. Ferguson et al. [4] showed that for US and UK 

populations the relation 𝑅0 = 𝑅𝑟𝑎𝑛𝑑 + 0.2 holds. In our simulations yielding 𝑅𝑟𝑎𝑛𝑑 = 1.5 we estimate 

ad epidemic growth rate of 0.221 days-1, in excellent agreement with the estimate of 0.219 days-1 

in [4] for simulations having 𝑅𝑟𝑎𝑛𝑑 = 1.5 and 𝑅0 = 1.7. This allows presenting all results in terms of 

𝑅0 rather than 𝑅𝑟𝑎𝑛𝑑, making it easier to compare them with the ones reported in the literature. 

For classic homogeneous mixing SIR models, it is well known [4,15] that 𝑅0 = 1 + 𝑟𝑇𝑔, where 𝑇𝑔 is 

the overall generation time and 𝑟 is the exponential growth rate of the epidemic. Since we are 

considering setting and age-specific generation time distributions, we do not know the value of the 

overall generation time for our model; moreover, we want to test whether this approximation still 

holds given the high heterogeneity of our model and, if so, for which value of the generation time 

(named 𝑇𝑒𝑓𝑓). By minimizing the quantity 

𝑓(𝑇𝑒𝑓𝑓) = ∑

(

 

1
𝑟𝑗
−
𝑇𝑒𝑓𝑓
𝑗 − 1

1
𝑟𝑗 )

 

2

𝑗=𝑅0∈{1.1,…,2.3}

 

where 𝑟𝑗 is the growth rate of the simulated epidemic having 𝑅0 = 𝑗, we obtain 𝑇𝑒𝑓𝑓 = 3.2 days, in 

perfect agreement with the findings reported in [4] and we can conclude that the relation between 

𝑅0and 𝑇𝑔 is a good approximation in the explored range 𝑅0 = 1.1,… ,2.3. This justifies the choice, 

already used for instance in [2,8], of multiplying transmission rates for suitable scaling factors in 

order to obtain different transmissibility scenarios. 

Basic reproductive number 

The transmission model was calibrated assuming a basic reproductive number R0=1.5, to be 

consistent with estimates for the 2009 H1N1 influenza pandemic presented in [16]. R0 was 

computed from the intrinsic growth rate during the initial phase of the simulated epidemic without 

assuming any kind of intervention, initialized with 100 infectious individuals randomly chosen in the 

population so that stochastic effects were partially eliminated. As a sensitivity analysis we also 

explored scenarios with R0=1.3, 1.7. 

Probability of being symptomatic  

In the reference scenario we considered the proportion of influenza cases showing symptoms to 

be 30%, as described in [17]. 50% probability of being symptomatic was also explored as 

sensitivity analysis. 
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Differential susceptibility by age  

In the reference scenario we assumed children to be twice more susceptible to infection than 

adults, as estimated for the 2009 A/H1N1 influenza pandemic as well as for other influenza 

epidemics [9,18,19]; in the main text we also explored the scenarios where children are either as 

susceptible or four times more susceptible than adults. 

Time of simulation  

We set the day when the first case in the population occurred as the initial time of the simulation, 

and let the simulation run for 600 days. Closure interventions can be implemented as soon as the 

cumulative number of cases experiencing symptoms in the UK as a whole reaches 0.25% of the 

total population (corresponding to ~140,000 individuals), and during the following 180 days. 

Number of realizations  

In order to ensure stability of findings, all presented results were obtained by averaging over 50 

stochastic realizations of the same experiment. Around 26,000 simulations were carried out as a 

whole to produce the full analysis. Variability among simulations was larger for the epidemic timing, 

due to the stochastic nature of the initial phases, while final infection attack rate, depending on the 

course of the entire epidemic, was very stable. 

 

Additional results 

Start of interventions 

The choice, made in the main text, to begin the application of interventions as soon as the 

cumulative number of cases experiencing symptoms in the UK as a whole reaches 0.25% or 

higher of the total population is arbitrary. To perform a sensitivity analysis on this threshold, we 

considered the framework corresponding to the best attack rate reduction provided to lose 4 

weeks, and assumed to allow closures after the first case in the population (which represents an 

extreme situation) or as soon as cumulative symptomatic cases were 0.5% or 1% of the total 

population. We obtained that, for all closure types, all thresholds on the initial cumulative incidence 

yield attack rate reduction comparable to the baseline 0.25% threshold, while starting closures 

after the very first case would be too early, causing too little impact on attack rate (Fig S1). This 

means that a cumulative case incidence of 0.25% or higher may be a good trigger for starting 

closures while avoiding false alarms that may not be unusual in the very first phases of the 

epidemic. 

 



 6 

 

Fig S1. Start of intervention. Final attack rate reduction for different options on when to allow first 

implementation of school closure: after the first national case or as soon as 0.25%, 0.5% or 1% of 

the national population gets infected with symptoms. The considered framework is the one yielding 

the best final attack rate reduction when 4 weeks lost per student are allowed. Red bars: reactive 

closure; green bars: gradual closure; blue bars: county closure. 

 

Transient and permanent effects 

All results presented in the main text are evaluated right after the end of the period during which 

application of closure policies is possible: we may refer to this as the “transient” behavior of the 

epidemic. Of course, in principle the epidemic may not be over by that time and a resurgence of 

cases would still be possible, so we analyze the main epidemiological indicators (i.e. attack rate 

reduction, peak incidence reduction, peak delay) of the best strategies also at the end of the 

simulation. We assumed the final time of each simulation to be 600 days after the first national 

case, without considering holidays typically planned during the school year in order to emphasize 

the effect of unscheduled closures. We infer (Fig S2) that the only situation where some significant 

difference between transient and final behavior can be observed is attack rate reduction for 8 

weeks lost: in that case best reactive, gradual and county closures yield a 40-45% attack rate 

reduction with respect to the baseline scenario at the end of closure implementation, dropping to 

about 30% at the end of the simulation. The only other marginal difference between transient and 

final attack rate reduction can be observed for county closure at 4 weeks lost. This means that all 

best implementations (for whatever indicator and closure type), applicable in a period lasting 180 

days, are almost always able to halt the epidemic, with the only relevant exception of 8 weeks lost, 

where a second wave of cases at the end of the closure implementation period can be observed 

(see Fig S3). 
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Fig S2.  Transient vs. permanent effects. Relevant indicators of the mitigated epidemics 

resulting from the optimal strategies evaluated right at the end of the closure implementation 

period (empty circles) and at the final time of the simulation (solid circles), in terms of the number 

of weeks lost per student. Red: reactive closure; green: gradual closure; blue: county closure. 
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Fig S3. Daily incidence. National daily cases per 10,000 individuals for the epidemic without any 

closure intervention (grey) and epidemic resulting from optimal closure strategies in terms of 

transient attack rate reduction (red: reactive closure; green: gradual closure; blue: county closure). 

Solid lines represent mean values from the total simulation runs; shaded regions represent the 

corresponding 95% confidence intervals. Vertical lines correspond to the starting and ending dates 

of the period during which closures can be implemented, with their 95% confidence intervals 

represented on top. a, c, e. Four weeks lost per student. b, d, f. Eight weeks lost per student. 
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